NUKLIR

Prinsip Reaksi Nuklir Berantai

Reaksi nuklir yang didapat digunakan untuk membangkitkan energi ada dua jenis yaitu reaksi nuklir fisi (pembelahan) dan reaksi nuklir fusi (penggabungan). Dalam reaksi nuklir fisi, atom-atom berat yang dapat belah (fisionable) terbelah oleh neutron, sedangkan reaksi fusi merupakan penggabungan inti-inti isotop hidrogen.  Ada tiga inti dapat belah yaitu U-235, U-233 dan Pu-239. Neutron merupakan partikel yang ideal untuk membelah inti. Ia tidak bermuatan listrik, sehingga mudah masuk ke dalam inti atom tanpa mengalami gaya tolak Coulomb. Sebagai diketahui atom tersusun atas neutron dan proton yang terikat dalam volum yang sangat kecil dan dikelilingi oleh elektron orbit. Ukuran atom berorde 10-10 m dan ukuran inti berorde 10-15 m. Seandainya elektron, proton dan neutron diperbesar seukuran kelereng dengan radius 1 cm. Maka kelereng elektron ini akan mmengitari kelereng inti dengan radius 1 km. Atom netral memiliki jumlah elektron sama dengan jumlah proton dan jumlah ini menggambarkan nomor atom. Jumlah proton dan neutron menggambarkan nomor massa. Untuk U-235, maka jumlah proton adalah 92 dan jumlah neutron ada 143. Untuk U-238, jumlah proton 92 dan jumlah neutron 146. Secara kimia sifat U-235 dan U-238 adalah sama. Walaupun proton dan neutron terpaket dalam volum yang sangat kecil, namun gaya-gaya repulsif coulomb antar proton dapat dikalahkan oleh gaya-gaya nuklir yang dangatkuat. Pada reaksi pembelahan inti dibebaskan energi sekitar 100 sampai 200 juta elektron volt. Di samping itu juga dibebaskan 2 sampai 3 neutron baru. Dalam waktu sekejap (seperjuta detik) gumpalan bahan fisi akan membebaskan energi yang sangat besar dan terjadilah ledakan. Reaksi berantai dapat terjadi pada gumpalan massa fisi yang mencapai massa super kritis. 
Baik U-235 maupun U-238 adalah radioaktif. Uranium adalah metal yang berat jenisnya lebih besar dari emas dan setelah mengalami peluruhan lebih dari 100.000 tahun, maka uranium akan menjadi timbal (Pb). Kedua isitop di atas terdapat di alam dengan perbandingan (U-238/U-235)= 99,3 / 0,7. 
Bahan uranium-235 sangat sukar untuk dipisahkan. Setiap 25.000 ton bijih uranium yang ditambang dari bumi, hanya menghasilkan 50 ton metal uranium. Dari metal uranium ini 99,3% adalah U-238 dan tidak dapat dijadikan bahan bakar langsung bagi bom atom. Andaikan terbentuknya uranium merupakan awal terbentuknya batuan atau bumi, maka dengan mengukur kadar Pb, dapatlah diperkirakan umur batuan. Demikianlah umur bumi diperkirakan sekitar empat setengah milyar tahun. 
Unsur plutonium tidak terdapat di alam, dan kalau toh ditemukan hanya dalam bentuk unsur kelumit. Pu-239 dapat dibuat di dalam reaktor ketika U-238 mendapat hujan neutron yang bertubi-tubi yang mengubahnya menjadi U-239. Unsur yang terakhir ini setelah melepaskan positron mengalami transmutasi menjadi Pu-239. Ada metode kimia yang digunakan untuk memisahkan Pu-239 dari campurannya. Plutonium bahan yang mudah belah tetapi tidak semudah U-235. Ia juga bahan yang beracun. 
Bahan-bahan yang murni nuklir perlu disimpan sedemikian massa kritis tidak dilampaui. Untuk bom nuklir maka bahan-bahan perlu dipisahkan sedemikian masing-masing tidakmencapai kritis. Kekritisan dapat dicapai dengan menyatukan bahan-bahan yang dibawah kritis tersebut sampai mencapai massa superkritis. Salah satu cara adalah dengan detonasi kimia. 
Bahan lain yang merupakan bahan bom nukri adalah gas deuterium dan tritirium. Pada suhu yang sangat tinggi kedua bahan ini dapat bereaksi fusi nuklir dan menghasilkan panas. Reaksi ini terjadi di matahari dan merupakan sumber energi kehidupan dibumi. Setiap detiknya dibakar sekitar 6 juta ton gas hidrogen. Hasil gas bahan berupa gas He dan dalam reaksi dibebaskan neutron cepat. Bom atom fusi memerlukan kondisi awal dengan suhu yang tinggi sekali yaitu berorde jutaan derajat celcius. Suhu ini dapat dicapai dengan ledakan fisi U-235 atau fisi Pu-239. Dengan demikian bom atom hidrogrn merurpakan bom atom dua tngkat yaitu fisi diikuti fusi. Kekuatannyapun lebih dahsyat yaitu sekitar 15 Megaton. 
Bom fusi dapat digunakan untuk meledakkan bom nuklir dengan bahan bakar U-238. Bahan ini sangat melimpah sehingga dapat dibuat bom nuklir yang dangat kuat. U-238 dapat dibelah oleh neutron cepat yang dibebaskan oleh reaksi fusi. Dengan fisi (U-238), fusi (D-T) dan fisi (U-238) maka dapat dicapai kekuatan 125 Megaton atau lebih. 
Tabel 1. Melukiskan perbandingan kekuatan bim atom dibandingkan dengan bom konvensional. 
 
Tabel 1
Perbandingan Kekuatan Bom Atom dan Bom Konvensional
Jenis Bom Kekutan
(dlm Ton TNT)
1. Bom atom jatuh di Nagasaki
2. Seluruh bom jatuh di Jerman selama perang dunia II
3. Seluruh bahan ledak kimia selama perang dunia II
4. Bom Hidrogen diledakkan di Bikini Atoll 1954
10.000
1.300.000
5.000.000
15.000.000
  Dapat dihitung bahwa satu bom hidrogen yang melenyapkan Bikini Atoll ekivalen dengan 3 kali bahan ledak dalam perang dunia II.Tidaklah mengherankan kalau satu kapal selam nuklir yang membawa senjata nuklir taktis mempunyai kemampuan daya ledak 25 kali daya ledak seluruh mesiu yang pernah diledakkan dalam perang dunia II. Sebanyak lebih 15.000 senjata nuklir saat ini dimiliki oleh negara-negara nuklir. 

Dampak Fisik Ledakan Nuklir

Bom yang dijatuhkan memerlukan ketepatan posisi ledak atas tanah. Untuk mengetahui posisi nol, maka di dalam bom ada peralatan pengukur ketinggian yang disebut altimeter. Pada saat posisi nol, maka detonator kimia akan bekerja. Detonator kimia ini akan menekan bahan-bahan uranium murni menyatu sehingga mencapai superkritis.  Ledakan nuklir pertama di New Mexico menggambarkan betapa dahsyatnya eneergi yang dibebaskan dalam sekejap. Hampir 80 % energi yang dibebaskan berupa energi kinetik produk-produk hasil fisi, ishock wavei, radiasi termal dan kilatan cahaya, 6% dibebaskan dalam bentuk radiasi temasuk 3% radiasi neutron. Sisanya 14% dibebaskan dalam bentuk debu-debu radioaktif hasil fisi. 
Dampak fisik dari ledakan dapat diperhitungkan dan dibagi menjadi 5 zona, yaitu Zona-1, adalah zona dimana semua lenyap menjadi uap, 98% fasilitas, tekanan lebih 25 psi dan kecepatan angin sekitar 320 mph. Zona 2 adalah zona kerusakan total, 90% fasilitas, tekanan lebih 17 psi dan kecepatan angin 290 mph. Zona-3 adalah zona kerusakan dahsyat dimana bangunan-bangunan besar seperti pabrik,gedung-gedung, jalan tol, jembatan dan lain-lain, roboh berkeping-keping, fatalitas 65% dan 30% luka-luka, tekanan 9 psi dan kecepatan angin 260 mph, Zona-4 adalah zona kerusakan panas hebat, smuanya terbakar, penduduk kesesakan nafas karena oksigen disedot oleh pembakaran, fatalitas 50%, 45% luka-luka. Zona-5 adalah zona dengan kerusakan angin dan api, rumah-rumah penduduk rusak, banyak penduduk terlempar oleh angin, yang selamat dalam keadaan terbakar, 15% mati dan 50% luka-luka, tekanan 5 psi dan kecepatan angin 98 mph. 
Radius zona bergantung dari kekuatan bom. Dalam Tabel 2 ditunjukkan jangkauan radius berbagi kekuatan bom dalam mil. 
 
Tabel 2
Jangkauan Radius berbagai Kekuatan Bom dalam Mil
Kekuatan Bom 10 Kiloton 1 Megaton 20 Megaton
Zona-1
Zona-2
Zona-3
Zona-4
Zona-5
0,5
1
1,75
2,5
3
2,5
3,75
6,5
7,75
10
8,75
14
27
31
35
  Pada Tabel 3. ditunjukkan angka kerusakan dan angka kematian dari dua bom yang jatuh di Jepang 
 
Tabel 3
Angka Kerusakan dan Angka Kematian dari Dua Bom yang Jatuh di Jepang
Nagasaki REF.1 REF.2 REF.3
1. Tewas dan Hilang
2. Luka-luka
39,000
>25,000
25,677
23,345
36,000
40,000
Hirosima
1. Tewas dan Hilang
2. Luka-luka
66,000
69,000
92,133
37,424
70,000
70,000