Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama
disebut gerak periodik. Karena gerak ini terjadi secara teratur maka
disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel
melakukan gerak periodik pada lintasan yang sama maka geraknya disebut
gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah
benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak
harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.
Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar
terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita
memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila
kita menghentikan petikan. Demikian juga bandul yang berhenti berayun
jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya
gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti
berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam.
Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan
efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi
untuk mengisi kembali energi yang hilang akibat gesekan, salah satu
contohnya adalah pegas dalam arloji yang sering kita pakai. Pada
kesempatan ini kita hanya membahas gerak harmonik sederhana secara
mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis
gerak yang menyerupai sistem inI.
MESIN JET
Mesin jet adalah sebuah jenis mesin pembakar dalam menghirup udara yang sering digunakan dalam pesawat. Prinsip seluruh mesin jet pada dasarnya sama; mereka mempercepat massa (udara dan hasil pembakaran) ke satu arah dan dari hukum gerak newton ketiga mesin akan mengalami dorongan ke arah yang berlawanan. Yang termasuk mesin jet antara lain turbojet, turbofan, rocket, ramjet, dan pump-jet.
Mesin ini menghirup udara dari depan dan mengkompresinya. Udara digabungkan dengan bahan bakar, dan dibakar. pembakaran menambah banyak peningkatan energi dari gas yang kemudian dibuang ke belakang mesin. Proses ini mirip dengan siklus 4- gerak, dengan induksi, kompresi, penyalaan, dan pembuangan terjadi secara berkelanjutan. Mesin menghasilkan dorongan karena percepatan udara yang melaluinya; gaya yang sama dan berlawanan yang dihasilkan adalah dorongan bagi mesin.
Mesin jet mengambil massa udara yang relatif sedikit dan mempercepatnya dengan jumlah yang besar, di mana sebuah pendorong mengambil massa udara secara besar dan mempercepatnya dalam jumlah kecil. Pembuangan kecepatan tinggi dari mesin jet membuatnya efisien pada kecepatan tinggi (terutama kecepatan supersonik) dan ketinggian tinggi. Pada pesawat pelan dan yang membutuhkan jarak terbang pendek, pendorong yang menggunakan turbin gas, yang umumnya dikenal sebagai turboprop, lebih umum dan lebih efisien. Pesawat sangat kecil biasanya menggunakan mesin piston untuk menjalankan pendorong tetap turboprop kecil semakin lama semakin kecil dengan berkembangnya teknologi teknik.
efisiensi pembakaran sebuah mesin jet, seperti mesin pembakar dalam lainnya, dipengaruhi besar oleh rasio volume udara yang dikompresi dengan volume pembuangan. Dalam mesin turbin kompresi udara dan bentuk "duct" yang melewati ruang pembakaran mencegah aliran balik dari situ dan membuat pembakaran berkelanjutan dimungkinkan dan proses pendorongan.
Mesin turbojet modern modular dalam konsep dan rancangan. Inti penghasilan-tenaga utama, sama dalam seluruh mesin jet, disebut sebagai generator gas. Dan juga modul tambahan lainnya seperti gearset pengurang dorongan (turboprop/turboshaft), kipas lewat, dan "afterburner". Jenis alat tambahan dipasang berdasarkan penggunaan pesawat.
NUKLIR
Prinsip Reaksi Nuklir Berantai
Reaksi nuklir yang didapat digunakan untuk membangkitkan energi ada dua jenis yaitu reaksi nuklir fisi (pembelahan) dan reaksi nuklir fusi (penggabungan). Dalam reaksi nuklir fisi, atom-atom berat yang dapat belah (fisionable) terbelah oleh neutron, sedangkan reaksi fusi merupakan penggabungan inti-inti isotop hidrogen. Ada tiga inti dapat belah yaitu U-235, U-233 dan Pu-239. Neutron merupakan partikel yang ideal untuk membelah inti. Ia tidak bermuatan listrik, sehingga mudah masuk ke dalam inti atom tanpa mengalami gaya tolak Coulomb. Sebagai diketahui atom tersusun atas neutron dan proton yang terikat dalam volum yang sangat kecil dan dikelilingi oleh elektron orbit. Ukuran atom berorde 10-10 m dan ukuran inti berorde 10-15 m. Seandainya elektron, proton dan neutron diperbesar seukuran kelereng dengan radius 1 cm. Maka kelereng elektron ini akan mmengitari kelereng inti dengan radius 1 km. Atom netral memiliki jumlah elektron sama dengan jumlah proton dan jumlah ini menggambarkan nomor atom. Jumlah proton dan neutron menggambarkan nomor massa. Untuk U-235, maka jumlah proton adalah 92 dan jumlah neutron ada 143. Untuk U-238, jumlah proton 92 dan jumlah neutron 146. Secara kimia sifat U-235 dan U-238 adalah sama. Walaupun proton dan neutron terpaket dalam volum yang sangat kecil, namun gaya-gaya repulsif coulomb antar proton dapat dikalahkan oleh gaya-gaya nuklir yang dangatkuat. Pada reaksi pembelahan inti dibebaskan energi sekitar 100 sampai 200 juta elektron volt. Di samping itu juga dibebaskan 2 sampai 3 neutron baru. Dalam waktu sekejap (seperjuta detik) gumpalan bahan fisi akan membebaskan energi yang sangat besar dan terjadilah ledakan. Reaksi berantai dapat terjadi pada gumpalan massa fisi yang mencapai massa super kritis.Baik U-235 maupun U-238 adalah radioaktif. Uranium adalah metal yang berat jenisnya lebih besar dari emas dan setelah mengalami peluruhan lebih dari 100.000 tahun, maka uranium akan menjadi timbal (Pb). Kedua isitop di atas terdapat di alam dengan perbandingan (U-238/U-235)= 99,3 / 0,7.
Bahan uranium-235 sangat sukar untuk dipisahkan. Setiap 25.000 ton bijih uranium yang ditambang dari bumi, hanya menghasilkan 50 ton metal uranium. Dari metal uranium ini 99,3% adalah U-238 dan tidak dapat dijadikan bahan bakar langsung bagi bom atom. Andaikan terbentuknya uranium merupakan awal terbentuknya batuan atau bumi, maka dengan mengukur kadar Pb, dapatlah diperkirakan umur batuan. Demikianlah umur bumi diperkirakan sekitar empat setengah milyar tahun.
Unsur plutonium tidak terdapat di alam, dan kalau toh ditemukan hanya dalam bentuk unsur kelumit. Pu-239 dapat dibuat di dalam reaktor ketika U-238 mendapat hujan neutron yang bertubi-tubi yang mengubahnya menjadi U-239. Unsur yang terakhir ini setelah melepaskan positron mengalami transmutasi menjadi Pu-239. Ada metode kimia yang digunakan untuk memisahkan Pu-239 dari campurannya. Plutonium bahan yang mudah belah tetapi tidak semudah U-235. Ia juga bahan yang beracun.
Bahan-bahan yang murni nuklir perlu disimpan sedemikian massa kritis tidak dilampaui. Untuk bom nuklir maka bahan-bahan perlu dipisahkan sedemikian masing-masing tidakmencapai kritis. Kekritisan dapat dicapai dengan menyatukan bahan-bahan yang dibawah kritis tersebut sampai mencapai massa superkritis. Salah satu cara adalah dengan detonasi kimia.
Bahan lain yang merupakan bahan bom nukri adalah gas deuterium dan tritirium. Pada suhu yang sangat tinggi kedua bahan ini dapat bereaksi fusi nuklir dan menghasilkan panas. Reaksi ini terjadi di matahari dan merupakan sumber energi kehidupan dibumi. Setiap detiknya dibakar sekitar 6 juta ton gas hidrogen. Hasil gas bahan berupa gas He dan dalam reaksi dibebaskan neutron cepat. Bom atom fusi memerlukan kondisi awal dengan suhu yang tinggi sekali yaitu berorde jutaan derajat celcius. Suhu ini dapat dicapai dengan ledakan fisi U-235 atau fisi Pu-239. Dengan demikian bom atom hidrogrn merurpakan bom atom dua tngkat yaitu fisi diikuti fusi. Kekuatannyapun lebih dahsyat yaitu sekitar 15 Megaton.
Bom fusi dapat digunakan untuk meledakkan bom nuklir dengan bahan bakar U-238. Bahan ini sangat melimpah sehingga dapat dibuat bom nuklir yang dangat kuat. U-238 dapat dibelah oleh neutron cepat yang dibebaskan oleh reaksi fusi. Dengan fisi (U-238), fusi (D-T) dan fisi (U-238) maka dapat dicapai kekuatan 125 Megaton atau lebih.
Tabel 1. Melukiskan perbandingan kekuatan bim atom dibandingkan dengan bom konvensional.
Jenis Bom | Kekutan
(dlm Ton TNT) |
1. Bom atom jatuh di Nagasaki
2. Seluruh bom jatuh di Jerman selama perang dunia II 3. Seluruh bahan ledak kimia selama perang dunia II 4. Bom Hidrogen diledakkan di Bikini Atoll 1954 |
10.000
1.300.000
5.000.000
15.000.000
|
Dampak Fisik Ledakan Nuklir
Bom yang dijatuhkan memerlukan ketepatan posisi ledak atas tanah. Untuk mengetahui posisi nol, maka di dalam bom ada peralatan pengukur ketinggian yang disebut altimeter. Pada saat posisi nol, maka detonator kimia akan bekerja. Detonator kimia ini akan menekan bahan-bahan uranium murni menyatu sehingga mencapai superkritis. Ledakan nuklir pertama di New Mexico menggambarkan betapa dahsyatnya eneergi yang dibebaskan dalam sekejap. Hampir 80 % energi yang dibebaskan berupa energi kinetik produk-produk hasil fisi, ishock wavei, radiasi termal dan kilatan cahaya, 6% dibebaskan dalam bentuk radiasi temasuk 3% radiasi neutron. Sisanya 14% dibebaskan dalam bentuk debu-debu radioaktif hasil fisi.Dampak fisik dari ledakan dapat diperhitungkan dan dibagi menjadi 5 zona, yaitu Zona-1, adalah zona dimana semua lenyap menjadi uap, 98% fasilitas, tekanan lebih 25 psi dan kecepatan angin sekitar 320 mph. Zona 2 adalah zona kerusakan total, 90% fasilitas, tekanan lebih 17 psi dan kecepatan angin 290 mph. Zona-3 adalah zona kerusakan dahsyat dimana bangunan-bangunan besar seperti pabrik,gedung-gedung, jalan tol, jembatan dan lain-lain, roboh berkeping-keping, fatalitas 65% dan 30% luka-luka, tekanan 9 psi dan kecepatan angin 260 mph, Zona-4 adalah zona kerusakan panas hebat, smuanya terbakar, penduduk kesesakan nafas karena oksigen disedot oleh pembakaran, fatalitas 50%, 45% luka-luka. Zona-5 adalah zona dengan kerusakan angin dan api, rumah-rumah penduduk rusak, banyak penduduk terlempar oleh angin, yang selamat dalam keadaan terbakar, 15% mati dan 50% luka-luka, tekanan 5 psi dan kecepatan angin 98 mph.
Radius zona bergantung dari kekuatan bom. Dalam Tabel 2 ditunjukkan jangkauan radius berbagi kekuatan bom dalam mil.
Kekuatan Bom | 10 Kiloton | 1 Megaton | 20 Megaton |
Zona-1
Zona-2 Zona-3 Zona-4 Zona-5 |
0,5
1
1,75
2,5
3
|
2,5
3,75
6,5
7,75
10
|
8,75
14
27
31
35
|
Nagasaki | REF.1 | REF.2 | REF.3 |
1. Tewas dan Hilang
2. Luka-luka |
39,000
>25,000 |
25,677
23,345 |
36,000
40,000 |
Hirosima | |||
1. Tewas dan Hilang
2. Luka-luka |
66,000
69,000 |
92,133
37,424 |
70,000
70,000 |
PESAWAT SILUMAN
Pesawat siluman (bahasa inggris: stealth aircraft) atau disebut pesawat amat senyap adalah pesawat yang dirancang untuk menyerap dan membelokkan radar menggunakan teknologi siluman, membuatnya lebih sulit untuk dideteksi. Pada umumnya tujuannya adalah melancarkan serangan selagi dia masih berada di luar pendeteksian musuh.
Pesawat siluman memiliki kemampuan untuk menghindari pendeteksian, baik deteksi secara visual, audio, sensor panas, maupun gelombang radio(radar). Secara visual, pesawat lebih sulit untuk terlihat bila mempunyai warna yang sama dengan warna latar belakangnya (kamuflase). Secara audio, tentunya berusaha untuk membuat pesawat semakin tenang. Secara sensor panas, pesawat biasanya dideteksi dari panas yang timbul dari badannya atau dari temperatur udara di sekelilingnya.
Bagian paling panas dari pesawat adalah saluran buangan udara mesin atau exhaust dan leading edge (bagian pesawat yang pertama membelah udara). Panas dari exhaust bisa dikurangi dengan cara mencampur semburan mesin dengan udara dingin dari luar badan pesawat sebelum dihembuskan keluar pesawat dan memperpanjang pipa exhaust . Bagian exhaust ini biasanya dikejar oleh rudal anti pesawat dengan sensor inframerah. Akan tetapi rudal pencari panas modern kini juga memiliki kemampuan untuk mendeteksi dan mengejar panas yang dihasilkan akibat pergesekan permukaan badan pesawat dengan udara.
Deteksi secara gelombang radio adalah dengan cara mencegah gelombang radio dari radar tidak terpantul dari badan pesawat dan kembali ke radar. Gelombang radio tersebut bisa diserap jika badan pesawat dilapisi RAM (Radar Absorbent Material), dipantulkan ke arah lain, atau sedemikian sehingga gelombang tersebut menjadi hilang atau saling meniadakan (hal inilah yang mendasari bentuk pesawat siluman yang mempunyai bentuk yang lain dari pesawat biasa atau agak aneh).
Pesawat siluman biasanya tidak 100% tidak terdeteksi radar. Tetapi karena memiliki RCS (Radar Cross Section) yang kecil maka di layar radar hanya tampak sebesar gerombolan burung, bukan pesawat.
Pesawat siluman (bahasa inggris: stealth aircraft) atau disebut pesawat amat senyap adalah pesawat yang dirancang untuk menyerap dan membelokkan radar menggunakan teknologi siluman, membuatnya lebih sulit untuk dideteksi. Pada umumnya tujuannya adalah melancarkan serangan selagi dia masih berada di luar pendeteksian musuh.
Pesawat siluman memiliki kemampuan untuk menghindari pendeteksian, baik deteksi secara visual, audio, sensor panas, maupun gelombang radio(radar). Secara visual, pesawat lebih sulit untuk terlihat bila mempunyai warna yang sama dengan warna latar belakangnya (kamuflase). Secara audio, tentunya berusaha untuk membuat pesawat semakin tenang. Secara sensor panas, pesawat biasanya dideteksi dari panas yang timbul dari badannya atau dari temperatur udara di sekelilingnya.
Bagian paling panas dari pesawat adalah saluran buangan udara mesin atau exhaust dan leading edge (bagian pesawat yang pertama membelah udara). Panas dari exhaust bisa dikurangi dengan cara mencampur semburan mesin dengan udara dingin dari luar badan pesawat sebelum dihembuskan keluar pesawat dan memperpanjang pipa exhaust . Bagian exhaust ini biasanya dikejar oleh rudal anti pesawat dengan sensor inframerah. Akan tetapi rudal pencari panas modern kini juga memiliki kemampuan untuk mendeteksi dan mengejar panas yang dihasilkan akibat pergesekan permukaan badan pesawat dengan udara.
Deteksi secara gelombang radio adalah dengan cara mencegah gelombang radio dari radar tidak terpantul dari badan pesawat dan kembali ke radar. Gelombang radio tersebut bisa diserap jika badan pesawat dilapisi RAM (Radar Absorbent Material), dipantulkan ke arah lain, atau sedemikian sehingga gelombang tersebut menjadi hilang atau saling meniadakan (hal inilah yang mendasari bentuk pesawat siluman yang mempunyai bentuk yang lain dari pesawat biasa atau agak aneh).
Pesawat siluman biasanya tidak 100% tidak terdeteksi radar. Tetapi karena memiliki RCS (Radar Cross Section) yang kecil maka di layar radar hanya tampak sebesar gerombolan burung, bukan pesawat.
tekanan air
salah satu contoh dari penggunaan fisika yang mungkin tidak kita sadari adalah penggunaan keran air.
FISIKA itu??
Fisika (bahasa yunani: φυσικός (fysikós), "alamiah", dan φύσις (fýsis), "alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.
Dalam fisika banyak hal-hal alam yang menarik yang harus kita ketahui dan kita pelajari. salah satunya energi yang dihasilkan oleh matahari yang berupa gelombang elektromagnetik. selain itu ada juga yang namanya listrik, grafitasi, suhu, kalor dan banyak gejala-gejala lain yang ada di alam yang belum kita ketahui. Dalam Fisika listrik merupakan hal yang menarik untuk dibahas. Sekarang merupakan jaman yang selalu menggunakan listrik, dan banyak ilmuan ilmuan fisika yang berusaha membuat listrik yang murah, mudah dan efisien.
Fisika (bahasa yunani: φυσικός (fysikós), "alamiah", dan φύσις (fýsis), "alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.
Dalam fisika banyak hal-hal alam yang menarik yang harus kita ketahui dan kita pelajari. salah satunya energi yang dihasilkan oleh matahari yang berupa gelombang elektromagnetik. selain itu ada juga yang namanya listrik, grafitasi, suhu, kalor dan banyak gejala-gejala lain yang ada di alam yang belum kita ketahui. Dalam Fisika listrik merupakan hal yang menarik untuk dibahas. Sekarang merupakan jaman yang selalu menggunakan listrik, dan banyak ilmuan ilmuan fisika yang berusaha membuat listrik yang murah, mudah dan efisien.
Subscribe to:
Posts (Atom)